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2.5D IC package arranges multiple chips in a planar fashion around a

silicon interposer.

Discussion

• To develop a methodology for thermal-fluid-structural analysis on

power cycling for 2.5D package assemblies

• To establish trustworthy simulation models by multi-step

validations
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Advantages of 2.5D IC packaging methodology

• Heterogeneous Integration – Dies do not have to utilize the same

process technology or function

• Reliable and Affordable – TSV fabrication & multi-level assembly

technologies get mature

• High I/O density, More functions, High performance efficiency,

Latency reduction, Improvement of inter-die bandwidth/power
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Large die area in 2.5D packages brings challenge to board level

reliability in thermal/power cycling (package warpage due to CTE

mismatch).

Motivation

Simulating power cycling is important since it is close to the actual

use condition of 2.5D package applications. Previously, averaged

convective heat transfer coefficients on surfaces were used in

conjugate simulations, which has limitations.
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Methodology

Forced air convection, Heat generation 50 watt per die
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Step I. Lidless 2.5D package

Step III. 2.5D package Assembly

Step II. Lidded 2.5D package
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Mapped contour in FE 
model (same temp. scale)
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Mapping for 2.5D package assembly

Conclusion

10% solder height

Critical 
solder joint

𝑁0 = 𝐾1(∆𝑊𝑎𝑣𝑒)
𝐾2

𝑑𝑎

𝑑𝑁
= 𝐾3(∆𝑊𝑎𝑣𝑒)

𝐾4

𝑁𝑓 = 𝑁0 +
𝑎

 𝑑𝑎
𝑑𝑁

Darveaux’s model 
(Energy-based)

Crack initiation

Crack growth

Lifetime in cycle

Failure mode at critical solder joint in thermal cycling was investigated 

and fatigue life prediction was performed.

Plastic work Δ𝑊

Lifetime test data (N50%, N63.2%, early failure etc.) of 2.5D package 

assembly in the past were used to determine constants (𝐾1~𝐾4) above.
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To perform a proper temperature mapping

1. Finer CFD mesh than FE in solid zone

2. Discontinuous mesh in CFD model

3. Mapping at discrete time points 

(transient analysis)

Lid off

• Thermal-fluid-structural analysis method with temperature

mapping was developed for life prediction of 2.5D packages in

power cycling, offering assessment for actual use condition.

• High quality temperature mapping & multi-step validation were

performed to establish trustworthy simulation models.
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Δ𝑇 = 𝑇𝑗 − 𝑇𝑎𝑚𝑏𝑒𝑛𝑡
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Parametric study was performed regarding material selection to give 

suggestions on 2.5D package design for board-level reliability.
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Representative 
Unit

Discrete 
time points

Using Convective Heat Transfer 

Coefficient (HTC)

Using Temperature Data Mapping

Pros

• No data stability issue because 

temperature solution is solved by heat 

transfer physics in FEA. Easier 

implementation for quick assessment. 

Pros

• Nonuniform temperature distribution is 

transferred from CFD to FEA.  No extra 

work is needed to divide surfaces.

Cons

• Area dividing may be needed for 

surfaces having high temperature 

gradients. Results depend on HTC 

averaging.  

Cons

• To ensure data stability, finer mesh in 

solid zone of CFD is usually needed since 

temperature data are interpolated during 

mapping. 
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Material properties characterization 
of PCB & Substrate
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DIC warpage measurement contours
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